\checkmark	Investment Decisions, Project Planning and		
This Chapter Includes			
\bullet	Estimation of Project Cash Flow Relevant Cost Analysis for Projects		Project Appraisal Methods DCF and Non-DCF Techniques Capital Rationing Social Cost Benefit Analysis

Marks of Objective, Short Notes, Distinguish Between, Descriptive \& Practical Questions

Legend

For detailed analysis Login at www.scannerclasses.com for registration and password see first page of this book.

14.2 Scanner CMA Final Gr. III Paper - 14 (2016 Syllabus)

Descriptive Questions

2008 - Dec [4] (a) What are the main stages in the Capital Budgeting process?
(5 marks)

Answer:

The main stages in capital budgeting process are:

1. Identify and select the project.
2. Compute the funds required for the project and stages of fund requirement.
3. Compute the various cash inflows under various conditions due to the project.
4. Finalise the project for implementation.
5. Decide control parameters for successful implementation of the project.
6. Monitor regularly the progress of the project.
_- Space to write important points for revision

2016 - June [8] Answer the following:
(d) What are the situations in which Net Present Value (NPV) and Internal Rate of Return (IRR) give conflicting results? (4 marks)

Answer:

NPV and IRR may give conflicting results in the evaluation of different projects, in the following situations:
(i) Initial Investment Disparity: i.e. Different project sizes,
(ii) Project Life Disparity: i.e. Difference in project lives,
(iii) Outflow Patterns: i.e. when cash outflows arise at different points of time during the Project Life, rather than as Initial Investment (Time 0) only.
(iv) Cash Flow Disparity: when there is a huge difference between initial CFAT and later years' CFAT. A project with heavy initial CFAT than compared to later years will have higher IRR and vice-versa.
_- Space to write important points for revision

[Chapter "l- 1] Investment Decisions, Project...

14.3

2019 - June [8] Answer the following question:
(e) How would you choose indivisible projects under capital rationing? Can there be a situation where a project with lower NPV is chosen while discarding a project with higher NPV? Explain.

PV Factor Table:

End of Year	1	2	3	4	5
4%	0.962	0.925	0.890	0.855	0.822
4.8%	0.954	0.910	0.869	0.829	0.791
6%	0.943	0.890	0.840	0.792	0.747
7.2%	0.933	0.870	0.812	0.757	0.706
8.5%	0.922	0.849	0.783	0.722	0.665
10%	0.909	0.826	0.751	0.683	0.621
12%	0.893	0.797	0.712	0.636	0.567

Annuity Factors

$4 y r s$	$5 y r s$
3.632	4.454
3.562	4.353
3.465	4.212
3.372	4.078
3.276	3.941
3.169	3.791
3.038	3.605

$e^{.0225}$	1.0228	$e^{-0.0225}$	0.978
$e^{0.025}$	1.02532	$e^{-0.25}$	0.975
$e^{0.225}$	1.2523	$e^{-0.225}$	0.799
$e^{0.25}$	1.2840	$e^{-0.025}$	0.779
$e^{0.5}$	1.6458	$e^{-0.5}$	0.608

Annuity factors for 5 years:

Rate	8%	9%	10%	11%	12%	13%	14%	15%	16%	17%	18%
Factor	3.993	3.890	3.791	3.696	3.605	3.517	3.433	3.352	3.274	3.199	3.127

Practical Questions

2008 - Dec [5] (b) XYZ Ltd. is considering two mutually-exclusive projects. Both require an initial cash outlay of ₹10,000 each for machinery and have a life of 5 years. The company's required rate of return is 10% and it pays tax at 50%. The projects will be depreciated on a straight-line basis. The net cash flows (before taxes) expected to be generated by the projects and the present value (PV) factor (at 10\%) are as follows :

	Year				
	1	2	3	4	5
Project 1	$₹$	$₹$	$₹$	$₹$	$₹$
Project 1	4,000	4,000	4,000	4,000	4,000
PV factor (at 10\%)	6,000	3,000	2,000	5,000	5,000
	0.909	0.826	0.751	0.683	0.621

You are required to calculate the Pay Back Period of each project;
(10 marks)
Answer :
Calculation of net income and net cash flows after taxes:
Project-1

Year	Cash Flow before tax $(₹)$	Deprec- iation $(₹)$	Income before tax $(₹)$	Tax $(₹)$	Net Income $(₹)$	Net Cash Flow After tax $(₹)$
1	4,000	2,000	2,000	1,000	1,000	3,000
2	4,000	2,000	2,000	1,000	1,000	3,000
3	4,000	2,000	2,000	1,000	1,000	3,000
4	4,000	2,000	2,000	1,000	1,000	3,000

| [Chapter $\boldsymbol{\\|} \mid 1$ 1] Investment Decisions, Project... $\quad 14.5$ |
| :---: | :---: |

5	4,000	2,000	2,000	1,000	1,000	3,000

$$
\text { Project - } 2
$$

Year	Cash Flow before tax $(₹)$	Deprec- iation $(₹)$	Income before tax $(₹)$	Tax $(₹)$	Net Income $(₹)$	Net Cash Flow After tax $(₹)$
1	6,000	2,000	4,000	2,000	2,000	4,000
2	3,000	2,000	1,000	500	500	2,500
3	2,000	2,000	-	-	-	2,000
4	5,000	2,000	3,000	1,500	1,500	3,500
5	5,000	2,000	3,000	1,500	1,500	3,500

Project - 1

Pay Back Period:

Cash outlay ₹ 10,000
Cash flow p.a. ₹ 3,000
Payback period: $10,000 / 3,000=3.33$ Years.

Project - 2

Cash inflows: ₹ $(4,000+2,500+2,000)=₹ 8,500$ in 3 Years.

$$
4^{\text {th }} \text { Year Balance }-₹ 1,500
$$

Therefore, 1,500/3,500 = 0.43 Years
Pay back Period $=3$ Years +0.43 Years $=3.43$ Years.
Space to write important points for revision

2009 - June [5] (b) VEDIKA LTD. with a limited investment funds of ₹ $6,00,000$ is evaluating the desirability of 5 (five) investment proposals. Their profiles are summarised below :

Project Investment Annual cash flow (after tax) Life (in years)
(₹)
M 1,00,000
N 2,00,000
O 2,40,000
(₹)
36,000
1,00,000
60,000

10
4
8
14.5

14.6 ■ Scanner CMA Final Gr. III Paper - 14 (2016 Syllabus)

P	$3,00,000$	80,000	16
Q	$4,00,000$	60,000	25

Project N and Q are mutually exclusive. The cost of funds is 10 percent.
Required :
Find out the feasible combination of projects and rank them on the basis of Net Present Value (NPV).
Note : Extracted from the table:
Year 104
PVIFA at $10 \% \quad 6.145 \quad 3.170 \quad 5.335 \quad 7.824 \quad 9.077$

Answer :					
Project	Investment	Cash flow	Annuity	PV (cash flow xannuity)	NPV (PV-invest.)
M	$1,00,000$	36,000	6.145	$2,21,220$	$1,21,220$
N	$2,00,000$	$1,00,000$	3.170	$3,17,000$	$1,17,000$
O	$2,40,000$	60,000	5.335	$3,20,100$	80,100
P	$3,00,000$	80,000	7.824	$6,25,920$	$3,25,920$
Q	$4,00,000$	60,000	9.077	$5,44,620$	$1,44,620$

Life of project is not relevant in determination of NPV.
Statement of feasible combination :

Combination	Investment	NPV	Rank
M, N and P	$6,00,000$	$5,64,140$	1
M, N and O	$5,40,000$	$3,18,320$	4
O and P	$5,40,000$	$4,06,020$	3
M and Q	$5,00,000$	$2,65,840$	5
N and P	$5,00,000$	$4,42,920$	2
N and Q	$6,00,000$	$2,61,620$	6

- Space to write important points for revision

2009 - Dec [3] (b) ANKIT LTD. a manufacturing company produces 25,000 litres of special lubricants in its plant. The existing plant is not fully depreciated for tax purposes and has a book value of ₹ 3 lakh (it was bought for ₹ 6 lakh six years ago). The cost of the product is as under :

Cost/litre (₹)
Variable Costs 60.00

Fixed Overheads 15.00

$$
75.00
$$

It is expected that the old machine can be used for further period of 10 years by carrying out suitable repairs at a cost of ₹ 2 lakh annually.

A manufacturer of machinery is offering a new machine with the latest technology at ₹ 10 lakh after trading off the old plant (machine) for ₹ 1 lakh. The projected cost of the product will then be :

Cost/litre (₹)

$$
\begin{array}{ll}
\text { Variable Costs } & 45.00 \\
\text { Fixed Overheads } & \underline{20.00} \\
& \underline{65.00} \\
\hline
\end{array}
$$

The fixed overheads are allocations from other department plus the depreciation of plant and machinery.

The old machine can be sold for ₹ 2 lakh in the open market. The new machine is expected to last for 10 years at the end of which, its salvage value will be ₹ 1 lakh. Rate of corporate taxation is 50%. For tax purposes, the cost of the new machine and that of the old one may be depreciated in 10 years. The minimum rate of return expected is 10%.
It is also anticipated that in future the demand for the product will remain at 25,000 litres.

Advise whether the new machine can be purchased. Ignore capital gain taxes.
[Given : PVIFA (10\%, 10 years) $=6.145$, PVIF ($10 \%, 10$ years $)=0.386$.
Answer :
(5 + $3+2=10$ marks)

ANKIT LTD.

Comparative Analysis:

	Old Machine	New Machine	Differential Cash Flow on new machine (₹) Saving/(Extra Cost) ₹
Production Ltrs.	25,000	25,000	
Variable Cost per Ltr. $(₹)$	60	45	
Total Variable Cost $(₹)$	$15,00,000$	$11,25,000$	$3,75,000$

14.8 Scanner CMA Final Gr. III Paper - 14 (2016 Syllabus)

Annual Cost of Repair $(₹)$	$2,00,000$	-	$2,00,000$
Depreciation $(₹)$	30,000	$1,00,000$	$(70,000)$
$(10.00+1.00-1.00) / 10$			$5,05,000$
Total Saving			$(2,52,500)$
Less: Tax Saving (50%)			70,000
Add: Depreciation (not being cast outflow)			$3,22,500$

Present Value of Cash flow if new machine is taken:

Year		Cash Flow (₹)	PV Factor (at 10\%)	Present Value (₹)
0	Outflow on new Machine (₹ 10 lakhs)	$10,00,000$	1	$(10,00,000)$
$1-10$	Annual Saving (as above)	$3,22,500$	$6.145($ Cum $)$	$19,81,762$
10	Salvage value of new machine	$1,00,000$	0.386	38,600
				$10,20,362$

Recommendation: Since NPV is positive, the new plant is to be acquired. - Space to write important points for revision

2012 - Dec [3] (a) A Company has developed a new toy which has been estimated to have a life cycle of 3 years. To manufacture the toy, the company will have to purchase a semi-automatic injection moulding machine at a cost of ₹ $8,60,000$. The machine will have to be scrapped after 3 years at a salvage value of $₹ 1,10,000$. Variable cost of producing the toy would be 40% of the sales price.
Fixed expenses, apart from depreciation will be ₹ 50,000 per year. Besides, advertising and selling expenses will have to be incurred at the rate of ₹ $1,00,000$ in the first year, ₹ $1,50,000$ in the second year and ₹ 50,000 in the third year. The following projection of sales have been made after evaluating the consumer demand:

Probability Estimated Sales in year (₹ lakhs) Year 1 Year 2 Year 3
14.8
0.3
12
25
10
0.6
7
17
15
0.1
2
9
4

The Company is subject to corporate tax rate of 30% and its cost of capital is 15%.
Prepare a schedule computing the probable sales of the new toy and estimated cash flows in each of the three years. Also determine net present value (NPV) of the proposal. Ignore tax on salvage value.
The present value of ₹ 1 earned at the year end discounted at 15% -
Year 1 Year 2 Year 3
$\begin{array}{lll}0.87 & 0.756 & 0.658\end{array}$
(10 marks)
Answer:
Schedule showing Sales:
(Amount in ₹ lakh)

Probability	Year 1		Year 2		Year 3	
0.3	$\times 12$	3.6	$\times 25$	7.5	$\times 10$	3
0.6	$\times 7$	4.2	$\times 17$	10.2	$\times 15$	9
0.1	$\times 2$	0.2	$\times 9$	0.9	$\times 4$	0.4
		8		18.6		12.4

Determination of estimated cash flow: ₹ (lakh)

	Year 1	Year 2	Year 3
Probable Sales revenue	8.00	18.60	12.40
Less : Variable cost @ 40\%	3.20	7.44	4.96
	4.80	11.16	7.44
Less : Depreciation ₹ (8,60,000 - 1,10,000) / 3	2.50	2.50	2.50
Fixed cost	0.50	0.50	0.50
	1.80	8.16	4.44

14.10 Scanner CMA Final Gr. III Paper - 14 (2016 Syllabus)

Less : Advt. \& Sales Exp.	1.00	1.50	0.50
Earning before Tax	0.80	6.66	3.94
Tax @ 30\%	0.24	2.00	1.18
Earning after Tax	0.56	4.66	2.76
Total Cash flow after tax (add back Depreciation)	3.06	7.16	5.26
Add : salvage value	-	-	1.10
	3.06	7.16	6.36

Determination of NPV	CFAT	PV factor	Total PV
Year 1	3.06	0.870	2.662
2	7.16	0.756	5.413
3	6.36	0.658	4.185
Less : Cash outflow (Investment)			12.26
NPV	8.60		
N			3.66

Space to write important points for revision

2013 - June [3] (a) VEDAVYAS Ltd. is considering two mutually exclusive projects M and project N . The Finance Director thinks that the project with the higher NPV should be chosen, whereas the Managing Director thinks that the one with the higher IRR should be undertaken, especially as both projects have the same initial outlay and length of life. The company anticipates a cost of capital of 10% and the net after-tax cash flow of the projects are as follows:

Year	0	1	2	3	4	5

Cash flows (₹)

Project M	$(4,00,000)$	70,000	$1,60,000$	$1,80,000$	$1,50,000$	40,000
Project N	$(4,00,000)$	$4,36,000$	20,000	20,000	8,000	6,000
You						

You are required to:
(i) Calculate the NPV and IRR of each project.
(ii) State with reasons, which project you would recommend.
(iii) Explain the inconsistency in the ranking of the two projects.

Present value Table is given:

Year	0	1	2	3	4	5
PVIF at 10%	1.000	0.909	0.826	0.751	0.683	0.621
PVIF at 20%	1.000	0.833	0.694	0.579	0.482	0.402

Answer:

(i) Calculation of NPV and IRR

NPV of project M:

Year	Cash Flows	Discount factor (10\%)	Discounted values (₹)	Discount factor(20\%)	Discounted values (₹)
0	$(4,00,000)$	1.000	$(4,00,000)$	1.000	$(4,00,000)$
1	70,000	0.909	63,630	0.833	58,310
2	$1,60,000$	0.826	$1,32,160$	0.694	$1,11,040$
3	$1,80,000$	0.751	$1,35,180$	0.579	$1,04,220$
4	$1,50,000$	0.683	$1,02,450$	0.482	72,300
5	40,000	0.621	24,840	0.402	16,080
NPV			58,260		$(38,050)$

IRR of Project M:

At 20\% NPV is (-) 38,050 and at 10\% NPV id 58,260
$\therefore I R R=10+\frac{58260}{58260+38050} \times 10=10+\frac{58260}{96310} \times 10=10+6.05=16.05 \%$

NPV of Project N :

14.12 © Sanner CMA Final Gr. III Paper - 14 (2016 Syllabus)

Year	Cash Flows (₹)	Discount factor (10\%)	Discounted Values (₹)	Discount factor (20\%)	Discounted values (₹)
0	$(4,00,000)$	1.000	$(4,00,000)$	1.000	$(4,00,000)$
1	$4,36,000$	0.909	$3,96,324$	0.833	$3,63,188$
2	20,000	0.826	16,520	0.694	13,880
3	20,000	0.751	15,020	0.579	11,580
4	8,000	0.683	5,464	0.482	3,856
5	6,000	0.621	3,726	0.402	2,412
NPV			37,054		$(5,084)$

IRR of Project M: 18.79\%
(ii) Both the projects are acceptable because they generate the positive NPV at the company's cost of capital at 10%. However, the company will have to select PROJECT M because it has higher NPV. If the company follows IRR method, then PROJECT N should be selected because of higher internal rate of return (IRR). But when NPV and IRR give contradictory results, a project with higher NPV is generally preferred because of high return in absolute terms. Hence, Project M should be selected.
(iii) The inconsistency in the ranking of the projects arises because of the difference in the pattern of the cash flows. Project N generated the major cash flow in the first year itself.
——Space to write important points for revision
2013 - Dec [10] (c) Nava Ratna Ltd. has just installed MACHINE R at a cost of ₹ $2,00,000$. This machine has 5 years life with no residual value. The annual volume of production is estimated at 1,50,000 units, which can be sold at ₹ 6 per unit. Annual operating costs are estimated at ₹ $2,00,000$ (excluding depreciation) at this output level. Fixed costs are estimated at ₹ 3 per unit for the same level of production.

The company has just come across another model called MACHINE S, capable of giving the same output at an annual operating costs of $₹ 1,80,000$
14.12

[Chapter $\operatorname{l|l}$ 1] Investment Decisions, Project...

(excluding depreciation). There will be no change in fixed costs. Capital cost of this machine is $₹ 2,50,000$ and the estimated life is 5 years with no residual value.

The company has an offer for sale of MACHINE R at ₹ $1,00,000$. But the cost of dismantling and removal will amount to ₹ 30,000 . As the company has not yet commenced operation, it wants to sell MACHINE R and purchase MACHINE S.

Nava Ratna Ltd. will be a zero-tax company for 7 years in view of several incentives and allowances available. The cost of capital may be assumed as 14\%.

Required:
(i) Advise the company whether it should opt for replacement.
(ii) What would be your advice, if MACHINE R has not been installed but the company is in the process of selecting one or the other machine?
[Given: PVIF for $1-5$ years $=0.877,0.769,0.675,0.592,0.519]$
(10 marks)

Answer:

Replacement of Machine R: Incremental cash outflow:
Cash outflow of Machine S ₹ 2,50,000
Less: Sale value of Machine R (₹ 1,00,000-30,000) ₹ 70,000
Net outflow ₹ $1,80,000$
Incremental cash flow from Machine S:
Annual cash flow from Machine S:
[(1,50,000 $\times 6$) - 1,80,000 - (1,50,000 $\times 3$) $]$ Annual ₹ 2,70,000
Cash flow from Machine R:
$[(1,50,000 \times 6)-2,00,000-(1,50,000 \times 3)]$ ₹ 2,50,000
Net inflow ₹ 20,000

Present value of Incremental cash inflow:
$=20,000 \times(0.877+0.769+0.675+0.592+0.519)=₹ 68,640 \mathrm{NPV}$ of
Machine $S=68,640-1,80,000=₹(-) 1,11,360$.
[$₹ 2,00,000$ Spent on Machine R is a sunk cost and hence it is not relevant for deciding the replacement]
14.13

Decision: NPV of Machine S is negative. Replacement is not advised. If it selects one of the two, independent NPV is to be calculated for this decision.

Independent evaluation of Machine R \& Machine S:
(All in ₹)

Particulars	Machine R	Machine S
Units produced	$1,50,000$	$1,50,000$
Selling Price @ ₹ 6	$9,00,000$	$9,00,000$
Less: Operating cost (Exclusive of	$2,00,000$	$1,80,000$
depreciation)	$7,00,000$	$7,20,000$
Contribution	$4,50,000$	$4,50,000$
Less: Fixed cost	$2,50,000$	$2,70,000$
Annual cash flow		
PV of cash flows for 5 years, i.e., [Sum of		
PVIF for 14\%,5]	$8,58,000$	
$3.432 \times 2,50,000$	$2,00,000$	$9,26,640$
$3.432 \times 2,70,000$	$6,58,000$	$6,76,640$
Cash out flow		
NPV		

Decision: Choose Machine S as NPV of S is higher than that of R.
Space to write important points for revision

2015 - June [5] (a) A Ltd. company has undertaken market research at a cost of ₹ 4 Lakhs in order to forecast the future Cash Flows of an Investment Project with an expected life of four years as follows:

Year	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Sales revenue	$₹ 25,00,000$ ₹ $51,40,000$	$₹ 1,37,80,000$	$₹ 9,06,000$	

14.14

Costs
₹ $10,00,000$ ₹ $20,00,000$
₹ $50,00,000$ ₹ $35,00,000$
These forecast Cash Flows are before considering inflation of 4.7% p.a. The Capital Cost of the project, payable at the start of first year will be ₹ 40 Lakhs. The Investment Project will have zero scrap value at the end of the fourth year. The level of working capital investment at the start of each year is expected to be 10% of the sales revenue in that year.

Capital allowances would be available on the Capital Cost of the Investment Project on a 25% reducing balances basis. A Ltd. pays tax on Profit at an annual rate of 30% per year with tax being paid one year in arrears.
A Ltd. has a nominal (money terms) after tax Cost of Capital of 12% per year.
Discount Factor at 12% is as under:

Year	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
Discount Factor	0.893	0.797	0.712	0.636	0.567

Calculate the net Present Value of the Investment Project in nominal terms and comment on its financial acceptability.
(10 marks)
Answer:
Calculation of Net Present value of the investment project using a nominal terms approach.
(₹ ln ' 000 ')

Year	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
Sales Revenue	2617.50	5634.52	15815.74	1088.72	-
Less: Costs	1047.00	2192.42	5738.66	4205.86	-
Net Revenue	1570.5	3442.10	10077.08	-3117.14	-
Less: Tax Payable	-	(471.16)	(1032.64)	-3023.12	-
Capital Allowance	-	300.00	225.00	168.76	506.3
After Tax Cash Flow	1570.50	3270.94	9269.44	-5971.5	506.3
Less: Working Capital	-301.72	(1018.12)	1472.70	108.87	-
Project Cash Flow	1268.78	2252.82	10742.14	(5862.63)	506.3
Discount Factor 12\%	0.893	0.797	0.712	0.636	0.567

14.15
14.16 Scanner CMA Final Gr. III Paper - 14 (2016 Syllabus)

The net present value is ₹ 2873.58. So the investment is financially acceptable.

Working Notes:

1.

(₹ In '000')

Year	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Sales Revenue	2500	5140	13780	906
Inflated sales (by 4.7\%)	2617.5	5634.52	15815.74	1088.7

Inflated costs have been calculated accordingly although the normal discount rate is 12% and general rate of inflation is 4.7%.
2. Capital Allowance

Cost of project = ₹ 40,00,000
Tax @ 30\% = ₹ 12,00,000
$12,00,000 \times 25 \%=3,00,000$
$(12,00,000-3,00,000) \times 25 \%=2,25,000$
$(9,00,000-2,25,000) \times 25 \%=1,68,750$
12,00,000 - 3,00,000-2,25,000-1,68,750 = 5,06,250
3. Working Capital
10% of Incremental Sales.
$(2617.50-5634.52) \times 10 \%=(301.72)$
$(5634.52-15815.74) \times 10 \%=(1018.12)$
$(15815.74-1088.72) \times 10 \%=1472.70$
$(1088.72-0) \times 10 \%=\frac{108.87}{261.76}$
_ Space to write important points for revision

2015 - Dec [5] (a) A company is considering which of two mutually exclusive
projects it should undertake. The Finance Director thinks that the project with the higher Net Present Value (NPV) should be chosen whereas the Managing Director thinks that the one with the higher Internal Rate of Return (IRR) should be undertaken especially as both projects have the same initial outlay and length of life. The company anticipates cost of capital of 10% and the net after tax cash flows of the projects are as follows:

Year end	0	1	2	3	4	5
Cash flows (000) Project X	(200)	35	80	90	75	20
Project Y	(200)	218	10	10	4	3

(ii) Which project do you think will have a higher internal rate of return (IRR)? Why?
(2 marks)
(iii) Under what circumstances will NPV and IRR give different ranking of projects? Why?
(2 marks)
(iv) Which project would you recommend? Why?
(2 marks)
Answer:
(a) (i) Calculation of the NPV

Project X

Years	Cash Flows	Discount Factor @10\%	Discounted values
0	(200)	1.00	(200)
1	35	0.91	31.85
2	80	0.83	66.4
3	90	0.75	67.5
4	75	0.68	51
5	20	0.62	12.4
NPV			

Project Y

Years	Cash Flows	Discount Factor @10\%	Discounted values
0	(200)	1	(200)

14.17
14.18 Scanner CMA Final Gr. III Paper - 14 (2016 Syllabus)

1	218	0.91	198.38
2	10	0.83	8.30
3	10	0.75	7.50
4	4	0.68	2.72
5	3	0.62	1.86
	NPV		$\mathbf{1 8 . 7 6}$

(ii) Project Y will have a higher IRR since Y has very high initial cash inflow.
Project Y has a payback of less than 2 years. Whereas project X has smaller cash flows which are never in bulk. Hence Y will have a much higher IRR.
IRR assumes that cash flows are reinvested at IRR rates. Whereas NPV assumes investment only at the discount rate.
(iii) IRR and NPV can give different ranking if, projects compared have uneven cash inflows - the one with higher initial inflows has a higher IRR. When there are initial as well as intervening cash outlays (for e.g. heavy repairs, etc.), so that in the intervening period within the life of the project net cash flows are negative and positives we have a multiple IRR situation. Whereas the NPV is unique.
(iv) Project X can be recommended if the project has to run through completion and must exist for 5 years, since the net wealth added is higher.
Project Y can be recommended if there is any other investment opportunity for the cash flows generated in the $1^{\text {st }}$ year such that total NPV during the full 5 years is higher than project X.
——Space to write important points for revision

2016 - June [3] (b) A company is considering a proposal of installing a drying equipment. The equipment would involve a cash outlay of ₹ $6,00,000$ and net working capital of ₹ 80,000 . The expected life of the project is 5 years without any salvage value. Assume that the company is allowed to charge depreciation on straight line basis for income tax purpose. The estimated before-tax cash inflows (₹’000) are given below:

Year-end	1	2	3	4	5
Before-tax cash inflows	240	275	210	180	160

The applicable income-tax rate of the company is 35%. If the company's cost of capital is 12%, calculate the equipment's discounted payback period, and net present value.
(6 marks)

Answer:

Statement showing the calculation of present value of CFAT:
[₹ 000$]$

Particulars	Year 1	Year 2	Year 3	Year 4	Year 5
Cash flows before tax Less: Tax @ 35\%	$\begin{aligned} & 240 \\ & (84) \end{aligned}$	$\begin{array}{r} 275 \\ (96.25) \end{array}$	$\begin{array}{r} 210 \\ (73.5) \end{array}$	$\begin{aligned} & \hline 180 \\ & (63) \end{aligned}$	$\begin{aligned} & \hline 160 \\ & (56) \end{aligned}$
After tax cash flows Add: tax saving on depreciation	$\begin{array}{r} 156 \\ 42 \end{array}$	$\begin{array}{r} 178.75 \\ 42 \end{array}$	$\begin{array}{r} 136.5 \\ \hline 42 \end{array}$	$\begin{array}{r} \hline 117 \\ 42 \end{array}$	104 42
Net cash flow after tax Release of working capital	198	220.75	178.5	159	146 80
CFAT for last year PVF at 12% PV	$\begin{array}{r} -\overline{-} \\ 0.8929 \\ 176.79 \end{array}$	$\begin{aligned} & 0.7972 \\ & 175.98 \end{aligned}$	$\begin{array}{\|l\|} 0.7118 \\ 127.06 \end{array}$	$\begin{aligned} & 0.6355 \\ & 101.04 \end{aligned}$	$\begin{array}{r} 226 \\ 0.5674 \\ 128.23 \end{array}$
Cumulative discounted cash flows NPV = ₹ $709.10-₹ 680=₹ 29.10$ thousand	176.79	352.77	479.83	580.87	709.10

Discounted payback period $=4$ Years $+(₹ 6,80,000-5,80,870) / ₹ 1,28,230$ $=4.773$ years

- Space to write important points for revision

2016 - Dec [5] (a) An eatery is located in its own premises at Street A in a city. The Management is planning a relocation to a nearby new location, College Road, also owned by it so that it can attract new clients. Two years ago, the College Road location was considered and ₹ $2,00,000$ was paid to a consultant for site study. Due to metro rail construction, the idea had to be abandoned. Now the road is fit for easy access. Until now, the College Road premises could not be let out and was idle. But now, it can be let out on an

14.20 Scanner CMA Final Gr. III Paper - 14 (2016 Syllabus)

annual year end lease rental of $₹ 1,20,000$. On similar terms, Street A premises would fetch $₹ 2,50,000$. The eatery would have to spend $₹ 10,00,000$ on initial refurbishment if it relocates. This will entail a bank loan at 12% interest. 25% of its new sales would be from the old customers at the Street A premises who represented 25% of the Street A sales value. Other information is given below:

Figures (₹/annum) (valid for the next 5 years)	Street A (same as per existing values)	College Road
Sales	$15,00,000$	$21,00,000$
Variable Cost	$10,00,000$	$11,00,000$
Contribution	$5,00,000$	$10,00,000$
Fixed Cost (excluding depreciation)	$1,50,000$	$2,40,000$
Depreciation	30,000	$2,00,000$

(i) Depreciation is on straight line basis over 5 years. Assume that the life of the project is 5 years from now in both the premises.
(ii) Income Tax rate applicable is 35% and taxes are payable at the end of the year.
(iii) Cash flows from operations arise at the end of the year.
(iv) There is no salvage value in both the cases at the end of the project life.
(v) Both the sites are meant for long term usage. There is no sale of the premises envisaged.
(vi) Weighted average cost of capital until this project begins is 10%.
(vii) The Bank loan has to be repaid in equal instalments of principal at the end of each year together with the applicable interest on the outstanding principal.
(viii) Assume no time lag between the capital expenditure and the commencement of operation.
(ix) Use P.V. factors as given in the table.
(x) Show calculations to the nearest rupee.
(xi) The cost - revenue structure is different in both the locations and the above table is applicable for all customers in a location.
(xii) No significant changes in the working capital requirement.
14.20

You are required to present a statement showing the evaluation on an incremental basis, of relocating to the new premises, showing the rationale behind the cash flows you consider and those that you do not, for the evaluation. Recommend from a financial perspective using the NPV method, whether the eatery should relocate to the College Road premises.
(12 marks)

Answer:

	College Road			Street A		
	$\mathbf{2 5 \%}$	$\mathbf{7 5 \%}$	Total (Amount in Rupees)	$\mathbf{2 5 \%}$	$\mathbf{7 5 \%}$	Total (Amount in Rupees)
Sales Value	$5,25,000$	$15,75,000$	$21,00,000$	$3,75,000$	$11,25,000$	$15,00,000$
Variable Cost	$2,75,000$	$8,25,000$	$11,00,000$	$2,50,000$	$7,50,000$	$10,00,000$
Contribution	$2,50,000$	$7,50,000$	$10,00,000$	$1,25,000$	$3,75,000$	$5,00,000$
Fixed Cost (excluding depreciation)	-	$2,40,000$	$2,40,000$	-	$1,50,000$	$1,50,000$
Profit (before depreciation)	$2,50,000$	$5,10,000$	$7,60,000$	$1,25,000$	$2,25,000$	$3,50,000$
Depreciation			$2,00,000$			30,000
Profit			$5,60,000$			$3,20,000$

Statement showing relevant cash flows for NPV method

$\begin{array}{c}\text { Items of Cash } \\ \text { Flow }\end{array}$	$\begin{array}{c}\text { Amount } \\ \text { (in Rupees) }\end{array}$	Working Note		
$\begin{array}{l}\text { Cash profits from } \\ \text { operations } \\ \text { (year end 1 to 5) }\end{array}$	$+2,66,500$	$\begin{array}{l}\text { (From existing customers + 1,25,000; } \\ \text { from new customers }+2,85,000 \text {) }\end{array}$		
Alternatively, difference in the total			$\}$	profit columns since cost revenue
:---				
structures are different. Hence,				
$₹ 4,10,000$ before tax, i.e., ₹ 2,66,500				
after 35\% tax.				

Lease Rental of Street A premises	+ 84,500	Opportunity cost of Street A premises $=₹ 2,50,000$ less amount that would have been gained by rent of College Road ₹ $1,20,000=$ Opportunity loss, i.e., ₹ $1,30,000$ is the opportunity gain, less 35\% taxes.
Tax shield on Depreciation	+ 59,500	$\begin{array}{\|l\|} \hline \text { Depreciation (new) = ₹ } 2,00,000 \\ \text { less: Old = ₹ } 30,000 ; \text { Net = ₹ } 1,70,000 ; \\ \text { Tax Shield } 35 \%=35 \% \times ₹ 1,70,000 \end{array}$
Total inflows from the project	+ 4,10,500	
$\begin{aligned} & \hline \text { P.V. factor at } 12 \% \\ & \times .65=7.8 \% \\ & \text { years } 1 \text { to } 5 \end{aligned}$	4.014	12% is the project's cost of capital. Average thus far should not be taken, since this project involves this cost. Cost after tax $=65 \%$ of 12%. This is the minimum return that the project should fetch for acceptance.
Present value of inflows	+ 16,47,747	
Initial Outlay = Present value of outflows	- 10,00,000	Occurs at end of year zero or beginning of year 1. Hence discount rate $=1$
Net Present Value	+ 6,47,747	
Decision: It is recommended to relocate to the new premises.		
Cash flows not considered in the evaluation :		
Consultant's fee	2,00,000	Sunk cost. It has been incurred irrespective of the project and hence not considered.

14.22
[Chapter ${ }^{\prime \prime-1}$ 1] Investment Decisions, Project...
14.23

Bank Interest	Not considered since it does not arise from the project. It is a financing decision. The specific cost of financing is considered in the cut off rate used for the NPV.	
Bank Loan - Repayment	$2,00,000$	Not a project outflow.

Space to write important points for revision
2017 - June [2] (a) A Ltd. is considering replacement of an existing machine or to spend money on overhauling it. A Ltd. currently pays no taxes. The replacement machine costs ₹ 50,000 now and requires maintenance of ₹ 5,000 at the end of every year for 5 years. At the end of 5 years, it would have a salvage value of $₹ 10,000$ and would be sold. The existing machine requires increasing amounts of maintenance each year and its salvage value falls each year as follows:

Year	Maintenance (₹)	Salvage (₹)
Present	0	20,000
1	5,000	12,500
2	10,000	7,500
3	15,000	0

The cost of capital of A Ltd. is 15%.

End of year	1	2	3	4	5	6
Present value factor @ 15\%	0.8696	0.7561	0.6575	0.5718	0.4972	0.4323

When should the company replace the machine?
(8 marks)

Answer:

A \& Co. Equivalent cost of (EAC) of new machine
14.23

	Particulars	Amount (₹)
(i)	Cost of new machine now	50,000
	Add: P.V. of annual repairs @ ₹ 5,000 per annum for 5 years (₹ $5,000 \times 3.3522$)	16,761
		66,761
	Less: P.V. of salvage value at the end of 5 years (₹ $10,000 \times 0.4972$)	4,972
		61,789
	Equivalent annual cost (EAC) (₹ 61,789 / 3.3522)	18,432

Equivalent Cost (EAC) of keeping the old machine

Present value	I Year	II Year	III Year
(P.V.)	(₹)	(₹)	(₹)
Value Present	20,000	12,500	7,500
Add: P.V. of annual maintenance	4,348	8,696	13,043
(Annual Maintenance/1.15)			
Total	24,348	21,196	20,543
Less: P.V. of salvage value at the	10,870	6,522	Nil
end of the year (P.V./1.15)			
	13,478	14,674	20,543
Equivalent Annual Cost (EAC)	15,500	16,875	23,625

Advice: The company should replace the old machine after 2 years because the Equivalent Annual Cost (EAC) of the new machine at ₹ 18,432 is lower than the cost of using the existing machine in third year.
_- Space to write important points for revision

2017 - June [5] (b) ABC Ltd. has a capital budget of ₹ 2 crore for the year. From the following information relating to six independent proposals, select the projects if (i) the projects are divisible and (ii) projects are indivisible in order to maximise the NPV.
[Chapter 1 "| 1] Investment Decisions, Project...

Proposal	Investment (₹)	NPV (₹)
I	$8,500,000.00$	$5,000,000.00$
II	$3,500,000.00$	$2,600,000.00$
III	$6,000,000.00$	$2,000,000.00$
IV	$4,000,000.00$	$2,500,000.00$
V	$6,000,000.00$	$5,000,000.00$
VI	$8,000,000.00$	$(2,500,000.00)$

(6 marks)

Answer:

(i) If the projects are divisible

Projects are ranked according to Pl and arranged in descending order.

Proposal	Investment	NPV	PV of Inflows	PI	Rank
I	$85,00,000$	$50,00,000$	$1,35,00,000$	1.59	4
II	$35,00,000$	$26,00,000$	$61,00,000$	1.74	2
III	$60,00,000$	$20,00,000$	$80,00,000$	1.33	5
IV	$40,00,000$	$25,00,000$	$65,00,000$	1.63	3
V	$60,00,000$	$50,00,000$	$1,10,00,000$	1.83	1

Proposal	Investment	Cum Investment
V	$60,00,000$	$60,00,000$
II	$35,00,000$	$95,00,000$
IV	$40,00,000$	$1,35,00,000$
I	$85,00,000$	$2,20,00,000$
III	$60,00,000$	$2,80,00,000$

Only $65,00,000$ can be invested in project I. NPV of the project $=65 / 85 \times 50,00,000=38,23,529$
So the selected projects are V, II, IV and part of I.
14.25

14.26

 Scanner CMA Final Gr. III Paper - 14 (2016 Syllabus)(ii) If the projects are indivisible (by trial and error method)

Feasible Sets	Investments	NPV
V,II,I	$1,80,00,000$	$1,26,00,000$
V,IV,I	$1,85,00,000$	$1,25,00,000$
V, II, IV, III	$1,95,00,000$	$1,21,00,000$
I, II, IV	$1,60,00,000$	$1,01,00,000$
V, IV, III	$1,60,00,000$	$95,00,000$

Project V, II and I provides the maximum NPV may be undertaken.
Space to write important points for revision

2017 - Dec [5] (a) A manufacturing company has an old machine having no book value which can be sold now for ₹ $1,00,000$. It can be used for another five years after which it will have to be condemned without any sale value. The company is examining the following options:
Option I: To upgrade the existing machine at a cost of ₹ 20 lacs and continue operations for a further 5 years at the end of which the ₹ 20 lacs would have also fully been depreciated equally over the next 5 years and will fetch a sale value of $₹ 50,000$ at the end of the $5^{\text {th }}$ year.
Option II: To replace the old machine with a new one costing ₹ 40 lacs which will have a useful life of 5 years, during which it will be fully depreciated equally. At the end of the $5^{\text {th }}$ year, this machine will have a resale value of ₹ 10 lacs.
The following figures are the after-tax cash profits in rupees without the depreciation shield and the salvage values for the existing situation and the fresh options:

End of year	Existing Machine	Upgraded Machine	New Machine
1	$10,00,000$	$11,00,000$	$12,00,000$
2	$10,80,000$	$11,80,000$	$12,80,000$
3	$11,20,000$	$12,20,000$	$13,80,000$

14.26
[Chapter 1] 1] Investment Decisions, Project...
14.27

4	$12,00,000$	$13,00,000$	$14,80,000$
5	$13,00,000$	$14,00,000$	$16,00,000$

The hurdle rate used for evaluation is 15%.
Consider that the salvage values and profits will be subjected to tax at the normal tax rate of 40%.
Present an incremental analysis of options I and II and state which is better. Evaluate the better option above over continuing with the old machine without upgrading.
(8 marks)

Answer:
Option I vs Option II - Incremental Analysis

End of Year	Operating Profits	PV factor	PV of cash profits $(₹)$
0		1	
1	$1,00,000$	0.870	87,000
2	$1,00,000$	0.756	75,600
3	$1,60,000$	0.658	$1,05,280$
4	$1,80,000$	0.572	$1,02,960$
5	$2,00,000$	0.497	99,400
Total		$\mathbf{3 . 3 5 3}$	$\mathbf{4 , 7 0 , 2 4 0}$

New Machine Vs Upgraded Machine

Operating Profits		₹ 4,70,240
Depreciation shield	$(8,00,000-4,00,000) \times 40 \%$ $=160000$ with annuity factor $3.353=3.353 \times 1,60,000$	₹ $5,36,480$
Salvage value	$\left\lvert\, \begin{aligned} & (10,00,000-50,000) \times 60 \% \\ & =5,70,000 @ \text { PVF } 0.497 \end{aligned}\right.$	₹ $2,83,290$
Incremental cost of new machine	20,00,000 with PV factor 1	₹ (20,00,000)

14.27

14.28

Scanner CMA Final Gr. III Paper - 14 (2016 Syllabus)

Sale value of old machine Decrease in NPV with new machine	$60 \% \times 1$ lac, PV 1	$₹ 60,000$
₹ $6,49,990$		
Decision: Continue with the upgraded machine, Option 1		

Analysis: Continue without upgrade Vs Upgrade old machine

Increase in operating profits	$1,00,000 \times$ annuity factor 5 years $=1,00,000 \times 3.353$	3,35,300
Depreciation shield	$4,00,000 \times 40 \% \times 3.353$	5,36,480
Salvage value at yr 5 end	$50,000 \times 60 \% \times 0.497$	14,910
Sub Total - Incremental benefits over upgrade		8,86,690
Incremental cost of upgrade	20,00,000 $\times 1$	(20,00,000)
Net disadvantage of upgrade		11,13,310
Conclusion: Do not upgrade. Continue with the old machine as it is.		

——Space to write important points for revision

2018 - June [2] (a) Electronics Pvt. Ltd. is considering a proposal to replace one of its machines. In this connection, the following information is available : The existing machine was purchased 3 years ago for ₹ 20 Lakh. It was depreciated 20 per cent per annum on reducing balance basis. It has remaining useful life of 5 years, but its maintenance cost is expected to increase by ₹ 1 Lakh per year from the end of sixth year of its installation. Its present realizable value is ₹ 12 Lakh. The company has several machines having 20\% depreciation.
The new machine costs ₹ 30 Lakh and is subject to the same rate and basis of depreciation. On sale after 5 years, it is expected to realize ₹ 18 Lakh. With the new machine, the annual pre-tax operating costs (excluding

[Chapter $\operatorname{l|m}$ 1] Investment Decisions, Project...

14.29
depreciation) are expected to decrease by ₹ 2 Lakh. In addition, the machine would increase productivity on account of which net pre-tax revenues would increase by ₹ 3 Lakh annually (reckoned at year end). The tax rate applicable to the company is 40% and the cost of capital is 10 per cent.
Advise the company on the choice of the machine from a financial perspective on the basis of NPV.
PV Factors (10\%)

Year	1	2	3	4	5
PV Factor	0.909	0.826	0.751	0.683	0.621

Present an incremental analysis of using the existing machine versus replacing the machine with a new one. Present annual discounted cash flows in your answers with separate calculation showing annual discounted cash flows on account of incremental depreciation without netting off capital asset outflows or inflows. Calculations are to be presented to the nearest rupee. P.V. factors with above decimal places should be used.
(10 marks)

Answer:

(i)

Cost
Depreciation 20\%, year 1
Depreciation 20\%, year 2
WDV
Depreciation 20\%, year 3
WDV at $Y_{0}=$
(ii) Base for incremental depreciation

Cost of New Machine
Less: WDV of existing machine
Difference

Depreciation at end of the Year		PV	Disc. Values
Year 1	$3,95,200$	0.909	$3,59,237$
Year 2	$3,16,160$	0.826	$2,61,148$

14.29
(Amount in ₹)
20,00,000
4,00,000
16,00,000
3,20,000
12,80,000
2,56,000
10,24,000

30,00,000
10,24,000

Year 3	$2,52,928$	0.751	$1,89,949$
Year 4	$2,02,342$	0.683	$1,38,200$
Year 5	$1,61,874$	0.621	$1,00,524$
			$10,49,058$
Tax Shield 40\%			$4,19,623$

	Year 0	Year 1	Year 2	Year 3	Year 4	Year 5
Expenses				(1,00,000)	(1,00,000)	(1,00,000)
Revenue		3,00,000	3,00,000	3,00,000	3,00,000	3,00,000
Net Revenue		3,00,000	3,00,000	2,00,000	2,00,000	2,00,000
Net Revenue after Tax		1,80,000	1,80,000	1,20,000	1,20,000	1,20,000
Cost of New Machine	$(30,00,000)$					
Resale - Old Machine	12,00,000					
Resale - New Machine						18,00,000
Cash Flows other than Depreciation	(18,00,000)	1,80,000	1,80,000	1,20,000	1,20,000	19,20,000
PV Factor	- 1	0.909	0.826	0.751	0.683	0.621
Discount	$(18,00,000)$	1,63,620	1,48,680	90,120	81,960	11,92,320
Annual C/F						(1,23,300)

$\begin{array}{llr}\therefore & \text { PV of Cash Flows (Other than Depreciation) } & (1,23,300) \\ & \text { Depreciation Impact } & +4,19,623 \\ & \text { Net Impact } & \underline{+2,96,323}\end{array}$
Hence it is beneficial to go in for the new machine.
Space to write important points for revision

2018 - Dec [7] (a) Saptarshi Ltd. has just installed Machine - M at a cost of ₹ $2,10,000$. The machine has a five year life with no residual value. The annual volume of production is estimated at 150000 units, which can be sold at ₹ 6 per unit in the first two years and at ₹ 7,8 and 9 in the third, fourth and fifth years. The first year's operating costs are estimated at ₹ $2,00,000$

[Chapter $\operatorname{l|m}$ 1] Investment Decisions, Project...

14.31
(excluding depreciation) at this output level. Fixed costs are estimated at ₹ 3 per unit for the same level of production. The second year's cost will be the same as in the first year. Thereafter, costs (operating and fixed) will increase over the first year's cost by $10 \%, 20 \%$ and 25% respectively in the third, fourth and fifth years.
Saptarshi Ltd. has just come across another model called Machine-N capable of giving the same output at the same fixed and operating costs as in the first year of Machine-M. There will be no change over the first year's costs in the next four years also. Capital cost of this machine is ₹ $2,50,000$ and the estimated life is five years with nil residual value.

The company has an offer for sale of Machine - M at $₹ 1,10,000$. But the cost of dismantling and removal will amount to ₹ 40,000 . As the company has not yet commenced operations, it wants to sell Machine - M and purchase Machine - N.
Saptarshi Ltd. will be a zero - tax company for seven years in view of several incentives and allowances available.
The cost of capital is 15%.
(i) Advise whether the company should opt for the replacement. Present calculations of discounted annual cash flows to the nearest rupee without netting off.
(ii) Will there be any change in your view, if machine-M has not been installed, but the company is in the process of selecting one or the other machine?
Support your view with necessary workings. Cash flows of revenue and cost may be taken at year ends.
(8 marks)

Answer:

(i)

Replacement :	$₹$	
Cash outflow on Machine - N		$2,50,000$
Less : Sale value of Machine- M		
Less : Cost of Dismantling and Removal $=$	40,000	70,000

Net outflow =
1,80,000
P.V. of incremental cash inflows $=$ (From (ii) workings below) $13,32,200(N)-11,34,308(M)=197892$
NPV of Machine $-N=1,97,892-1,80,000=17,892$
₹ $2,10,000$ spent on Machine - M is a sunk cost and hence not relevant for deciding the replacement.
Decision: Since NPV of Machine -N is positive, replacement is advised.
(ii) Independent evaluation:

Machine - M

	Total Cost (Op + Fixed)	Sale Value	Net C/1	PV	Total Inflow
Y1	$6,50,000$	$9,00,000$	$2,50,000$	0.870	$2,17,500$
Y2	$6,50,000$	$9,00,000$	$2,50,000$	0.756	$1,89,000$
Y3	$7,15,000$	$10,50,000$	$3,35,000$	0.658	$2.20,430$
Y4	$7,80,000$	$12,00,000$	$4,20,000$	0.572	$2,40,240$
Y5	$8,12,500$	$13,50,000$	$5,37,500$	0.497	$2.67,138$
					$11,34,308$
					$2,10,000$

Less: Cash outflow
Machine -
Y1
Y2
Y3
Y4

$6,50,000$	$9,00,000$	$2,50,000$	0.870	$2,17,500$
$6,50,000$	$9,00,000$	$2,50,000$	0.756	$1,89,000$
$6,50,000$	$10,50,000$	$4,00,000$	0.658	$2,63,200$
$6,50,000$	$12,00,000$	$5,50,000$	0.572	$3,14,600$

14.32

Y5 6,50,000	$13,50,000$	$7,00,000$	0.497	$\frac{3,47,900}{13,32,200}$
Less: Cash outflow		NPV $=\frac{2,50,000}{10,82,200}$		

Since the NPV of Machine $-N$ is higher than that of Machine $-M$, the choice should fall on Machine - N .
Note: As the company is a zero tax company depreciation and the tax effect on the same are not relevant for consideration.
_- Space to write important points for revision

2019 - June [4] (a) EC Limited is considering a new project with initial investment. It is estimated that IRR of the project is 16% having an estimated life of 5 years. The Finance Manager has studied that project with sensitivity analysis and informs that annual fixed cost sensitivity is 7.8416%, whereas cost of capital (discount rate) sensitivity is 60%. Other information available are:
Profit Volume Ratio (P/V)is 70\%
Variable cost ₹ 60 per unit
Annual Cash Flow (year end) ₹ 57,500
Ignore depreciation on initial investment and taxes. Calculate:
(i) Initial investment of the project
(ii) Net Present Value of the project
(iii) Annual Fixed Cost
(iv) Estimated annual sales units
(v) Break Even Units

